Department 5 Seminar Handling noise, uncertainty and their propagation

Michael Dietze¹

1 - GFZ German Research Centre for Geosciences, Section 5.1 Geomorphology

Department 5 Seminar Handling noise, uncertainty and their propagation

grain-size data issues 0000

End-member modelling analysis 0000

Applications 000000

Some thoughts about terms and definitions

Signal

Time-dependent function or value that describes certain properties of an entity. **Noise** A scatter of values around a signal (red vs. white noise)

Some thoughts about terms and definitions

SignalTime-dependent function or value that describes certain properties of an entity.

Noise A scatter of values around a signal (red vs. white noise)

Uncertainty Size of the value domain in which the true value is to be expected.

Error Deviation of a measured value from the true value.

Precision Reproducibility of a measured value (not its correctness).

Accuracy Agreement between measured and true value.

grain-size data issues

End-member modelling analysis

Applications

Some thoughts about terms and definitions

Signal Time-dependent function or value that describes certain properties of an entity.

Noise A scatter of values around a signal (red vs. white noise)

Uncertainty Size of the value domain in which the true value is to be expected.

Error Deviation of a measured value from the true value.

Precision Reproducibility of a measured value (not its correctness).

Accuracy Agreement between measured and true value.

PropagationRule to account for combined effects of individual

uncertainties in connected systems.

$$\Delta A = \sqrt{\sum_{i=1}^{n} \left(\frac{\delta A}{\delta x_i}\right)^2} \cdot \Delta x_i^2$$

grain-size data issues

End-member modelling analysis

Applications

Department 5 Seminar Handling noise, uncertainty and their propagation

Grain-size distribution unmixing and its role in understanding Earth surface dynamics

Michael Dietze¹

1 - GFZ German Research Centre for Geosciences, Section 5.1 Geomorphology

grain-size data issues | • ○ ○ ○ **End-member modelling analysis**

Applications

Grain-size data - a brief welcome

A continuous entity is described by discrete measured values.

Redundancy, due to class autocorrelation

Uncertainty, (mainly) due to discretisation

grain-size data issues • • 0 0

End-member modelling analysis 0000

Applications 000000

Grain-size data - a proxy for...

temporal buffers

path dependency

non-liniearity

inheritance

Concept of dynamic populations (Weltje & Prins, 2007)

grain-size data issues

End-member modelling analysis ○ ○ ○ ○

Applications

Grain-size data - a proxy for...

from process to record

grain-size data issues

End-member modelling analysis

Applications

Grain-size data - a proxy for...

0 20 40 60 80 100

Relative contribution

Archive composition

from process to record

from record to process

grain-size data issues

End-member modelling analysis

Applications

How to unmix grain-size data

Finite mixture modelling

Somewhat "straightforward"
Parametric description possible
Only local fitting
Strong influence of assumptions

End-member modelling

Somewhat "vague"
No reduction of grain-size classes
Global fitting
Good constraints on (the few) parameters

grain-size data issues

End-member modelling analysis ■ ○ ○ ○

Applications

EMMA - End-member modelling analysis (FORTRAN > Matlab > R)

Rescaling of the data matrix X to constant sum c

X <- X / apply(X, 1, sum) * c

Weight transformation with quantile range /_ to get matrix W

qts <- function(X, lw) quantile(X,
 c(lw, 1-lw), type = 5)
ls <- t(apply(X, 2, qts, lw = lw))
w <- t((t(X) - ls[,1]) / (
ls[,2] - ls[,1]))</pre>

Dataset modelling W_m as inner product of M_q and V_m^T

Similarity Matrix A calculation from W based on outer product A <- t(W) %*% W

Rescaling by calculating scaling factors s and use them with l to get V_{am} so $s \leftarrow (c - sum(1s[,1])) / appTy(Vqn * unname(1s[,2] - 1s[,1]), 2, sum) for(i in 1:q) Vqs[,i] <math>\leftarrow t(s[i]) * t(Vqn[,i]) * t(s[i]) * t(Vqn[,i]) * t(s[i]) * t(Vqn[,i]) * t(s[i]) * t(Vqn[,i]) * t($

to get vectors V and cumulative scores L.

EIG <- eigen(A)

V <- EIGSvectors[,order(seq(ncol(A), 1, -1))]

Vf <- V[,order(seq(ncol(A), 1, -1))]

L <- EIGSvalues[order(seq(ncol(A), 1, -1))]

Lv <- cumsum(sort(L/sum(L), decreasing = TRUE))

Rescaling of factor scores to get M_q :

Mqs $\leftarrow t(t(Mq) / s) / apply(t(Mq) / s), 1, sum)$

Rotation of the eigenvector matrix V, to get rotated Matrix V.

Vr <- do.call(rotation, list(Vf[,1:q]))</pre>

Model values to get matrix X_m <-- Mqs X** t(Vqs)

Extract and sort factor loadings V_{μ} , rescale (V_{μ}) and normalise (V_{μ})

Vq <- Vr\$Toadings[,order(seq(q, 1, -1))] Vqr <- t(t(t(Vq) / apply(Vq, 2, sum)) * c) Vqn <- t((Vqr - apply(Vqr, 1, min)) / (apply(Vqr, 1, max) - apply(Vqr, 1, min))) **Model evaluation**: scores explained variance (M_{model}), absolute model errors (E_{m} , E_{m}), explained data variance (R_{m} , R_{m}), overlapping modes (O), mode classes (M)

Dietze & Dietze (2013)

grain-size data issues

End-member modelling analysis

● ○ ○ ○

Applications • • • • • •

From EMMA to robust EMMA

grain-size data issues |

Applications

From EMMA to robust EMMA

grain-size data issues

End-member modelling analysis

● ● ○ ○

Applications

From EMMA to robust EMMA

GFZ German Research Centre for Geosciences, Section 5.1 Geomorphology >> Department Seminar

Mixing natural process end-members

A gentle introduction | grain-size data issues | End-me

End-member modelling analysis

Applications

Mixing natural process end-members

grain-size data issues

End-member modelling analysis

Applications• • • • • •

Application I - processes recorded in lakes across the Tibetan Plateau

Dietze et al. (2014)

grain-size data issues |

End-member modelling analysis

Applications• • • • • • •

Application I - processes recorded in lakes across the Tibetan Plateau

grain-size data issues

End-member modelling analysis

Applications 00000

Application I - processes recorded in lakes across the Tibetan Plateau

Application II - quasi-continuous EMMA on laminated marine sediments

Raw grain-size distribution

SEM-image classification yields spatially continuous grain-size information. A moving window filter calculates continuous grain-size distributions that are used for EMMA.

Application II - quasi-continuous EMMA on laminated marine sediments

Raw grain-size distribution

SEM-image classification yields spatially continuous grain-size information. A moving window filter calculates continuous grain-size distributions that are used for EMMA.

based on Lewis et al. (2010)

GFZ German Research Centre for Geosciences, Section 5.1 Geomorphology >> Department Seminar **End-member modelling analysis** A gentle introduction | grain-size data issues | Application III - Stone-covered landforms in deserts

Application III - Stone-covered landforms in deserts

Dietze et al. (2012, 2013)

Application IV - unmixing environmental signals in seismic records

Power spectral density estimate, storm event 3 - forest

Application IV - unmixing environmental signals in seismic records

Preliminary Summary

Grain-size data is suspect to either redundancy or uncertainty due to discretisation of a continuous distribution.

Direct linkage of grain-size properties to Earth surface dynamics may be limited due to multplicity, non-linearity, path-dependency, cascade systems, ...

Preliminary Summary

Grain-size data is suspect to either redundancy or uncertainty due to discretisation of a continuous distribution.

Direct linkage of grain-size properties to Earth surface dynamics may be limited due to multiplicity, non-linearity, path-dependency, cascade systems, ...

EMMA allows identification and quantification of generic sediment transport regimes along with estimation of uncertainty (loadings & scores) and inspection of sources of uncertainty.

EMMA can be applied to a variety of depositional systems and data beyond grain-size given data transformation is possible to fulfil EMMA constraints.

